Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4.

نویسندگان

  • Kenneth B E Gagnon
  • Roger England
  • Eric Delpire
چکیده

In the present study, we have demonstrated functional interaction between Ste20-related proline-alanine-rich kinase (SPAK), WNK4 [with no lysine (K)], and the widely expressed Na+-K+-2Cl- cotransporter type 1 (NKCC1). NKCC1 function, which we measured in Xenopus laevis oocytes under both isosmotic (basal) and hyperosmotic (stimulated) conditions, was unaffected when SPAK and WNK4 were expressed alone. In contrast, expression of both kinases with NKCC1 resulted in a significant increase in cotransporter activity and an insensitivity to external osmolarity or cell volume. NKCC1 activation is dependent on the catalytic activity of SPAK and likely also of WNK4, because mutations in their catalytic domains result in an absence of cotransporter stimulation. The results of our yeast two-hybrid experiments suggest that WNK4 does not interact directly with NKCC1 but does interact with SPAK. Functional experiments demonstrated that the binding of SPAK to WNK4 was also required because a SPAK-interaction-deficient WNK4 mutant (Phe997Ala) did not increase NKCC1 activity. We also have shown that the transport function of K+-Cl- cotransporter type 2 (KCC2), a neuron-specific KCl cotransporter, was diminished by the expression of both kinases under both isosmotic and hyposmotic conditions. Our data are consistent with WNK4 interacting with SPAK, which in turn phosphorylates and activates NKCC1 and phosphorylates and deactivates KCC2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WNK4 kinase is a negative regulator of K+-Cl- cotransporters.

WNK kinases [with no lysine (K) kinase] are emerging as regulators of several membrane transport proteins in which WNKs act as molecular switches that coordinate the activity of several players. Members of the cation-coupled chloride cotransporters family (solute carrier family number 12) are one of the main targets. WNK3 activates the Na(+)-driven cotransporters NCC, NKCC1, and NKCC2 and inhib...

متن کامل

Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage in Caenorhabditis elegans.

Members of the germinal center kinase (GCK)-VI subfamily of Ste20 kinases regulate a Caenorhabditis elegans ClC anion channel and vertebrate SLC12 cation-Cl(-) cotransporters. With no lysine (K) (WNK) protein kinases interact with and activate the mammalian GCK-VI kinases proline-alanine-rich Ste20-related kinase (PASK) and oxidative stress-responsive 1 (OSR1). We demonstrate here for the first...

متن کامل

WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.

The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine-rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not a...

متن کامل

Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.

Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stres...

متن کامل

Structure of the OSR1 kinase, a hypertension drug target.

The oxidative stress-responsive kinase-1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) interact, phosphorylate, and stimulate the activity of the cation-chloride cotransporters (NKCC1, NKCC2, and the Na1:Cl2 cotransporter (NCC)).1–4 These cotransporters play key roles in regulating salt intake and secretion from cells (reviewed in Refs. 5,6). Some of the most commonly prescri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 2006